DØ Algorithms and Report from D0reco Task Force

Qizhong Li Fermilab

Run II Computing Review, September 2005

Outline

- Report from D0reco Task Force
 - D0reco speed up effort
- D0 algorithms
 - Focus on detailed understanding of detector systematics
 - Preparation of full 1fb⁻¹ for quick analysis
 - Development of "second-generation" algorithms
 - Preparation for upgrades, higher luminosity
- Conclusions

P14 D0reco CPU problem

• Sept. 2004 with the higher luminosity, CPU problem became serious.

D0reco Task Force

- Charge: Speed up D0reco and reduce the slope to luminosity.
- Chair: Qizhong Li
- CD experts:
 - Philippe Canal, Jim Kowalkowski
- D0 tracking experts:
 - Guennadi Borissov, Mike Hildreth
- From physics groups:
 - Supriya Jain, Marine Michaut, Venkat Kaushik
- C++ code experts:
 - Scott Snyder, Paul Russo
- Executable managers:
 - Qizhong Li, Laurent Duflot, Suyong Choi
- Many people helped: calorimeter + cps experts, WZ and B physics group, ...

Task Force's Efforts

- CD experts wrote tools to study CPU in details.
- Analyzed hot spots in D0reco CPU with higher luminosity data:
 - Tracking used 80% of D0reco CPU
 - AA tracking used 60%
 - HTF tracking used 20%
 - Calnada package used 3%
 - CPS unpacking used 3%
- Studied CPU time dependency with:
 - CFT occupancy
 - Number of vertices
 - Track reconstruction p_T threshold
 - Different triggers

— ...

CFT Occupancy

Time vs #CFT clusters

 CPU time strongly correlated with CFT occupancy as expected

CPU vs Number of Tracks

CPU Speed Up Results

- ~15% CPU savings from improved code:
 - sin and cos calculations
 - matrix calculations
 - array access
 - lower level code improvements
- ~15% CPU saving from improved AA package:
 - Use big cluster instead of looking at each individual fiber.
- AA now no longer using most CPU
- Rewrote calnada and cps unpacking, no longer as hot spots.

The higher the luminosity, the more CPU savings! With no efficiency loss, no effect on physics!

High Luminosity Improvement

Improved D0reco CPU and less dependence on luminosity!

More improvements available for future

- The task force studied many possible speed-ups, not all of which were implemented.
 - Only those with no effect on efficiency were implemented.
- Developed several simple methods for more CPU savings to be used in future (with a few percent efficiency loss):
 - Not use the inner most layer as tracking seed;
 - Increasing track reconstruction
 p_T threshold.
- More complicated algorithmic changes are also possible.
- CD experts delivered a 20 page technical recommendation on how to improve AA tracking in future.

D0 Algorithms: Reaching Maturity

- Focus on detailed understanding of detector systematics
 - much improved description of detector material in MC and D0reco
 - improved simulation of tracker performance
 - zero-bias events used for noise & occupancy simulation
 - first full calorimeter calibration (EM and Hadron calorimeters)
- Preparation of full 1fb⁻¹ for quick analysis
 - reprocessing of entire dataset with above improvements
- Development of "second-generation" algorithms
 - Neural net b-tagging, new vertexing, etc.
- Preparation for Upgrades, higher luminosity
 - track timing optimization
 - algorithm modification for Layer 0 Silicon, CFT Timing,
 Triggers

D0 MC Improvements

- Calorimeter Material Description:
 - Modification to Calorimeter/Cryostat/Solenoid

- added 10% X₀ more material, better description
 - MC Z mass resolution degrades by 20% closer to data

Tracker Material

- Complete revamping of material in SMT volume
 - more detailed consideration of installed material
 - verification with photon conversions

- same material put in track fit

photon conversions vs. radius

Zero-bias in MC Simulation

• Overlay of zerobias events on top of MC hard scatter to simulate

detector occupancy, noise...

one zerobias event per MC event

• Taken randomly from Run II lumi profile:

Tail never previously described by any MC black: data

blue: Old MC

Run II Computing Review C

EM likelihood

9/13/2005 Q.Li

Calorimeter Calibration

- determine multiplicative constant for each cell in the calorimeter to maximize energy resolution
- EM Calibration: measured completely from data
 - finished early 2005
 - response normalized in phi at fixed eta with special calibration sample
 - inter-eta calibration fixed using Z mass

Pun II Computir from 3.35 to 2.9 GeV

Calorimeter Calibration: HAD

- Finished in July
 - response normalized in phi at fixed eta with special calibration sample
 - inter-eta calibration fixed using di-jet data
 - − Errors in Central Cal < 1%
 - ICD, high-η region limited by sample statistics
 - 5% rms variation of constants in each layer
 - comparisons with MC underway to understand asymptotic resolution

Preparation of 1fb⁻¹ Dataset

- Full reprocessing of all Run II data with latest D0Reco release (p17)
 - take advantage of Calorimeter EM calibration
 - other improved algorithms and new algorithms
- "Fixing" pass for all data to apply HAD calibration, improved material description in track fitting.
 - uses information stored in TMB++ (thumbnail) data format
 - track re-fit from stored hit information
- Developed RecoCert program:
 - being used for D0reco and "Fixing" verification
 - being used for monitor data quality
 - runs on the production farm for every event

Preparation of 1fb⁻¹ Dataset (Cont.)

- Common Analysis Format (CAF):
 - Root-based micro-DST, common for all Physics groups
 - common object-selection, trigger-selection, normalization tools
 - simplify, accelerate analysis development
- Developed framework (CAFÉ) to analyze CAF formatted data
- Developing common analysis tools (CAF_UTIL) for particle ID selectors, corrections, systematic tool and efficiency tool.

Reprocessing of all data will be done by October 2005.

All Run II data (~1fb⁻¹) will be in the same version of reconstruction, same analysis format.

New Algorithms: B-Tagging

- Neural-net tagger, combining several simple taggers
- Achives a 25% increase in efficiency or a 32% decrease in backgrounds
 - still investigating biases,
 systematic errors
- Will be a boon to many statistics-limited analyses
- Hopefully a harbinger of more good things to come from combined tags, more advanced tagging algorithms

QCD Fake Rate (%)

New Algorithms: Adaptive Vertexing

- Improved Primary Vertex resolution, less bias
 - benefits all analyses using lifetime information

- SMT hits required only where necessary
- default vertexing in fixing pass

Kalman Pull

2 I ndf

61.93 / 59

New Algorithms: Energy Flow

- TrackCalJet algorithm nearing maturity
 - Correction to jet energy based on average pion response and the individual track momenta
 - Individual track energies give more accurate correction to the energies deposited in the calorimeter
 - Corrections also made for tracks leaving the jet cone
- Gives significant improvement over calorimeter jets
 - 15% better on di-jet mass in Z→qq
- Further improvements can be made by using a larger cone around the jet for including energy from tracks
- Will be default jet algorithm for jet energy scale
- Further improvements are coming from improved single pion studies

New in p17: Pre-shower and Photon ID

• Reconstructed CPS information present for the first time in p17.

 $\Delta \phi$ and Δz between a CPS cluster and a track matched with an EM object.

Photon ID is new.

Photon ID incorporates tracking information by searching for hits along a road pointing from the event vertex to the EM cluster (Hits on the road method).

Future Timing Improvements

- Combined tracking algorithm
 - two components:
 - AA road-based algorithm
 - HTF histogram-based
 - AA was main focus of D0reco Task force
 - HTF now dominates CPU time
- Recent studies suggest another 20-30% time reduction in tracking timing may be possible by modifying HTF to concentrate on forward tracking
 - little loss in central efficiency
- Further structural mods to AA will be studied; should give further increase in speed

Preparing for Upgrades: SMT Layer 0

- fits inside current SMT on smaller beampipe
- software is ready for layer 0
 - GEANT geometry, digitization code, reconstruction geometry ready
 - incorporation of new hits into pattern recognition almost complete
- final material corrections TBD

9/13/2005

puting Review

Preparing for Upgrades: AFEII-t

- Replacement of CFT electronics to cure many occupancy- and ratedependent pathologies
 - will include timing information on each fiber (Trip-t chip)
 - simulation results indicate timing resolution of ~1.8 ns/fiber
 - \sim 36cm in z
 - consistent with measured resolution in lab tests
 - will be useful for improving speed of pattern recognition or reducing fake or mis-measured tracks at highest luminosities
 - only use hits consistent in z with track road
 - 40% speed-up seen in modified tracking version
- Aiming for summer/fall 2006 installation
 - algorithm development project to optimize use of timing info
 - calibration/monitoring effort will need to be developed

Trigger Upgrades: Related Software

- DØ Trigger upgrades include the replacement of most elements of the Level 1 Trigger system, improvements to Level 2 and Level 3.
 - Level 1 Calorimeter trigger and new Level 1 Calorimeter-Track match system include many new capabilities
 - clustering, tau algorithms, track-jet verification all at Level 1
 - complicated topological triggers possible
- Original simulation software used for system design now mature, fully integrated into the official DØ Trigger Simulation
 - work has passed from Upgrade Project to Trigger Studies Group
 - allows Level 2 and Level 3 code development
 - already used to design a preliminary trigger list using the new trigger objects
 - new trigger able to withstand 2E32 within Level 1+Level 2 rate budget
 - many studies ongoing

Conclusions

- Primary focus on understanding ultimate detector performance
 - minimize systematic errors for precision measurements
 - requires optimal treatment of data
 - requires excellent MC-Data agreement

In Parallel:

- preparation of 1fb⁻¹ dataset
 - reprocessing, fixing, new analysis data format, new MC
 - will be ready for Moriond 2006 conference
- new second-generation algorithms to optimize performance
- preparation for higher luminosity, detector upgrades
 - focus on maintaining efficiency, minimizing reconstruction time

Many projects underway/approaching completion.